A Latent Dirichlet Allocation Model for Entity Resolution
نویسندگان
چکیده
In this paper, we address the problem of entity resolution, where given many references to underlying objects, the task is to predict which references correspond to the same object. We propose a probabilistic model for collective entity resolution. Our approach differs from other recently proposed entity resolution approaches in that it is a) unsupervised, b) generative and c) introduces a hidden ‘group’ variable to capture collections of entities which are commonly observed together. The entity resolution decisions are not considered on an independent pairwise basis, but instead decisions are made collectively. We focus on how the use of relational links among the references can be exploited. We show how we can use Gibbs Sampling to infer the collaboration groups and the entities jointly from the observed co-author relationships among entity references and how this improves entity resolution performance. We demonstrate the utility of our approach on two real-world bibliographic datasets. In addition, we present preliminary results on characterizing conditions under which collaborative information is useful.
منابع مشابه
A Latent Dirichlet Model for Unsupervised Entity Resolution
Entity resolution has received considerable attention in recent years. Given many references to underlying entities, the goal is to predict which references correspond to the same entity. We show how to extend the Latent Dirichlet Allocation model for this task and propose a probabilistic model for collective entity resolution for relational domains where references are connected to each other....
متن کاملAuthor Disambiguation: A Nonparametric Topic and Co-authorship Model
A fully generative model is provided for the problem of author disambiguation. This approach infers the topics for each author and combines that with co-author information. The problems involved are similar to other entity resolution problems where differing references may refer to one author entity and identical references may refer to different author entities. We extend the hierarchical Diri...
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملEntity Set Expansion using Topic information
This paper proposes three modules based on latent topics of documents for alleviating “semantic drift” in bootstrapping entity set expansion. These new modules are added to a discriminative bootstrapping algorithm to realize topic feature generation, negative example selection and entity candidate pruning. In this study, we model latent topics with LDA (Latent Dirichlet Allocation) in an unsupe...
متن کاملExtracting Named Entities Using Named Entity Recognizer and Generating Topics Using Latent Dirichlet Allocation Algorithm for Arabic News Articles
This paper explains for the Arabic language, how to extract named entities and topics from news articles. Due to the lack of high quality tools for Named Entity Recognition (NER) and topic identification for Arabic, we have built an Arabic NER (RenA) and an Arabic topic extraction tool using the popular LDA algorithm (ALDA). NER involves extracting information and identifying types, such as nam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005